If human brain is analyzed in
a unsophisticated way, we can see the level of the molars structures, these are large areas
referring to the hemispheric divisions and major structures. For example, a
division that analyzes the brain from the halves, which is called them left
hemisphere and the right hemisphere.
Another myth that has been
maintained for a long time is that men are all left hemisphere, since they
employ logic and cognitive skills, while women are all right hemisphere, as
they are tender and retailers. This however, is only a sexist war, since both
hemispheres work together.
Black, J.E.,
Isaacs, K.R., Anderson,
B.J., Alcantara, A.A. y Greenough, W.T. (1990). Learning causes synaptogenesis,
whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats.
Proc.Natl.Acad.Sci.USA. 87,
5568-5572.
Fatemi, H., Aldinger, KA., Ashwood,
P., Bauman, ML., Blaha, D., Blatt, GJ., Chauhan, A., Chauhan V., Dager, SR.,
and Dickson, PE. (2012) Consensus paper: Pathological role of the cerebellum in
Autism. The Cerebellum. 11 (3)
777-807.
A finding that caused uproar
in the neuroscience field was the discovering that if they study the two
halves, they are not used for the same functions, this is each hemisphere
governs motor skills (relating to the movement) and sensory (related to the
senses) on the opposite side of the body, but is that one side of the brain is
clearly dominant. This is known as hemispheric dominance and this domain
determines if the individual will be right-handed or left-handed (Ayan, 2005).
The following image served a
first mapping of functions, and although many have taken it as a rule, the
brain does not work so coordinated and deterministic, is capable of making more
flexible functions if required.
As you can see in the image,
the brain functions are often divided on both sides, however, even though it
has traditionally been attributed to the left hemisphere management of logical
and intellectual, work related to people with large capacity for reasoning and
the right hemisphere is known as the artistic and emotional side represented by
artistic concerns, both are related from the other actually, occur as
complementary since the art, for example, requires logical thinking and logical
thinking has a touch of romanticism.
This collaborative work is
accomplished by the hemispheres are not isolated each other, a structure called
the Corpus Callosum unites them. This structure is the larger
interhemispheric commissure and connects across both hemispheres. The Corpus
Callosum is composed of approximately 180-200 millions of axons that mostly
come from the cells of the cerebral cortex and is capable of carrying 400
million pulses per second (Siffredi, Anderson, Leventer, Spencer-Smith, 2013;
Steele, Bailey, Zatorre, and Penhune, 2013).
This growth takes place
primarily during the pre natal period following a pattern of development from
front to back and is the way that both hemispheres are intimately related and
the reason why the impulses of a hemisphere and another make sense and relate
them (Quintero Gallego, Manaut, Rodríguez, Pérez Santamaría, Gomez, 2003).
In addition, there is another structure
forgotten most of the time, but it has gained strength in many researches by
its role in the processing of the movement and some cognitive functions and is
the cerebellum, which is considered a neuronal system responsible
for regulating movements with very well defined actions on coordination,
posture, tone and control of eye movements and fine movements, whose
geometric organization was described by Ramón y Cajal in 1911 and that has also
given rise to many assumptions and controversies during the past years, since the cerebellar cognitive functions have taken boom, as ever
gathered more evidence of the involvement of this structure in the modulation
of emotional control, sexuality and memory cognitive processes, as well as in
the planning or the strategies of learning or language (Arriaga - Mendicoa,
Otero - silicon and Crown - Vazquez, 1999; Mediavilla, Molina and Puerto , 1996; Schlerf, Ivry and Diedrichsen, 2012).
One of those in charge of
investigating this structure was Watson, who came to the conclusion that this
structure could intervene in sensory processing (auditory, visual, tactile...),
during the learning process. Previously, Marr, Albus, Eccles and other authors
had developed his theories about the role of the learning of motor skills in
cerebellar cortex, as well as emotion, motivation and reward processes (cited
in Watson, 1978).
Well, from the end of 1960´s decade diverse
neuroscientist have developed different
theories involving the cerebellum in motor skills learning and assume that this
does not participate much in the acquisition of a sequence of movements, but in
which they seem fluid and skilful, i.e., well learned.
In this sense, the main implication of the model
proposed by Marr in the early 60s (cited in Mediavilla, Molina and Port, 1996) would be the cerebellum to learn to execute motor skills and that, when
that happens, a simple or incomplete message of the cerebellum may cause
the execution. To analyze the role of this structure, studies have been carried
out with professional dancers, who depend on good cerebellar coordination to
run his art.
Also has been implicated to
the cerebellum in complex mental functions but not yet be determined with
participation of processes and the way it does. In any case, the evidence
supporting the consideration of the cerebellum as a learning machine, as
defined it the classical theories, that define it as a structure that could be
used for all kinds of neural, autonomic, motor or mental control (verbal and
non-verbal) are increasing (Fatemi, Aldinger, Ashwood, Bauman, Blaha, Blatt,
Chauhan, Chauhan, Dager, and Dickson, 2012).
A remarkable proof of involvement of the cerebellum
in motor learning provided it the fact that, after this type of learning,
synaptogenesis (emergence of new connections between neurons) occurs in the
cerebellar cortex, which means that this structure is necessary and creates
connections that work for the benefit of the process (Black, Isaacs, Anderson,
Alcantara, and Greenough, 1990).
References
Arriaga –Mendicoa, N., Otero –
Silicio, E. y Corona – Vázquez, T.
(1999) Conceptos actuales sobre cerebelo y cognición. Rev. Neurol. 29-
1064-1075.
Ayan, S.
(2005) Right brain may be wrong. Scientific
American Mind. Vol. 16. Num. 2. 82-84.
Mediavilla, C.,
Molina, F. y Puerto, A. (1996) funciones no motoras del
cerebelo. Psicothema. Vol. 8,
nº 3, pp. 669-68.
Quintero
Gallego, E., Manaut, E., Rodríguez, E., Pérez Santamaría, J., Gómez, C. (2003)
Desarrollo diferencial del cuerpo calloso en relación con el hemisferio
cerebral. Revista española de neuropsicología.
5. 1. 49-64.
Schlerf, J., Ivry, RB., and Diedrichsen, J. (2012) Encoding
of sensory prediction errors in the human cerebellum. The Journal of Neuroscience. 32 (14) 4913- 4922.
Siffredi, V., Anderson,, V., Leventer, RJ., Spencer-Smith, MM. (2013) Neuropsychological profile of
agenesis of the Corpus Callosum: A systematic Review. Developmental Neuropsychology.38 (1) 36-57.
Steele, CJ., Bailey, JA., Zatorre, RJ., and Penhune, VB.
(2013) Early musical training and white-matter plasticity in the corpus
callosum: Evidence for a sensitive period. The
Journal of Neuroscience. 33 (3) 1282- 1290.
Watson, P.J. (1978) Nonmotor functions of the
Cerebellum. Psychol. Bulletin, 85(5), 944-967.
No comments:
Post a Comment